



# HADRON™ 640R ENGINEERING DATASHEET

Doc. # 102-2053-40, Revision 160 January 18, 2024

Approved for public release: Teledyne FLIR approved [FLIRGTC-SBA-010].



# TABLE OF CONTENTS

| 1 | INTRO                | DUCTION                                                                            | 3                     |
|---|----------------------|------------------------------------------------------------------------------------|-----------------------|
|   | 1.1<br>1.2<br>1.3    | References<br>Abbreviations and definitions<br>Revision history                    | 3                     |
| 2 | SYSTE                | M OVERVIEW                                                                         | 4                     |
|   | 2.1                  | Datasheet summary                                                                  | 4                     |
|   | 2.2                  | Product architecture                                                               | 5                     |
|   | 2.3                  | IR camera                                                                          | 5                     |
|   | 2.4                  | EO camera                                                                          | 7                     |
|   | 2.5                  | EEPROM Error!                                                                      | Bookmark not defined. |
|   |                      | 2.5.1 Identification and Calibration                                               | 7                     |
| 3 | MECHA                | NICAL                                                                              | 8                     |
|   | 31                   |                                                                                    |                       |
|   | 0.1                  | Hadron 640R mechanical dimensions                                                  | 8                     |
|   | 3.2                  |                                                                                    |                       |
|   | 0.1                  | Hadron 640R mechanical dimensions<br>IMU location<br>Example of gimbal integration |                       |
| 4 | 3.2<br>3.3           | IMU location                                                                       |                       |
| 4 | 3.2<br>3.3<br>ELECTI | IMU location<br>Example of gimbal integration                                      |                       |
| 4 | 3.2<br>3.3<br>ELECTI | IMU location<br>Example of gimbal integration                                      |                       |



# 1 INTRODUCTION

This document is a detailed datasheet for Hadron 640R, a dual camera IR+EO core payload intended to be mounted on a small UAS gimbal. There are separate interfaces to the two cameras: the EO camera has a 4-lane MIPI interface and the IR camera has 2-lane MIPI and USB 3.0 interfaces. Hadron 640R also has a built in IMU for gimbal stabilization. Any video processing is performed outside the Hadron 640R.

# 1.1 References

| DOCUMENT                       | LOCATION                                                                                                |
|--------------------------------|---------------------------------------------------------------------------------------------------------|
| Boson Engineering<br>Datasheet | https://flir.netx.net/file/asset/52701/original/attachment                                              |
| Boson resources                | https://www.flir.com/support/products/boson#Resources                                                   |
| OV64B Resources                | https://www.ovt.com/products/ov64b40-ga5a-002a-z/                                                       |
| Bosch BHI160B<br>datasheet     | https://www.bosch-<br>sensortec.com/media/boschsensortec/downloads/datasheets/bst-bhi160b-<br>ds000.pdf |

# 1.2 Abbreviations and definitions

| ABBREVIATION | DEFINITION                    |
|--------------|-------------------------------|
| CCI          | Command and Control Interface |
| EFL          | Effective Focal Length        |
| EO           | Electro-Optical               |
| (H)FOV       | (Horizontal) Field of View    |
| IDD          | Interface Design Document     |
| IMU          | Inertial Measurement Unit     |
| IR           | Infrared                      |
| UAS          | Unmanned Aircraft System      |
| UVC          | USB Video Class               |



# 1.3 Revision history

| REVISION | DATE       | COMMENT                                         |
|----------|------------|-------------------------------------------------|
| 100      | 2022-04-13 | First revision.                                 |
| 160      | 2024-01-18 | Added camera alignment calibration information. |

# 2 SYSTEM OVERVIEW

# 2.1 Datasheet summary

All dimensions and weights are preliminary and nominal design values. They may be updated later with measured values.

| Part number of complete Hadron 640R | 60Hz: 70640AS32-6PMRXX<br>9Hz: 70640AS32-9PMRXX                                                             |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Size (estimate)                     | 36 x 50 x 43 mm                                                                                             |
| Weight (estimate)                   | 56 g                                                                                                        |
| Power (estimate)                    | 5V supply voltage. Typical power dissipation < 1800 mW, Max < 3000 mW (during FFC)                          |
| Mechanical interface (estimate)     | Screw mount to back plate                                                                                   |
| Electrical interface (estimate)     | Hadron 640R connector: Hirose DF40C-50DP-0.4V(51)<br>Example of mating connector: DF40HC(2.5)-50DS-0.4V(51) |
| IR camera sensor                    | Pass-through interface to Boson MIPI and USB                                                                |
| EO camera sensor                    | Omnivision OV64B, 9248x6944 pixels, 0.701 $\mu$ m pitch, 4-lane MIPI                                        |
| EO camera optics                    | EFL 4.8 mm, 67° HFOV, F/# 2.3, 390nm to 640nm IR cut filter                                                 |
| EO camera video                     | Full resolution @ 60Hz<br>See OV64B datasheet for more options                                              |
| IMU                                 | Bosch BHI160B, I2C                                                                                          |
| Operational and storage temperature | -20 °C to +60 °C                                                                                            |
| Tested EMI performance              | FCC part 15 Class B                                                                                         |
| Environmental sealing               | IP54 (with the rear interfaces sealed)                                                                      |



Product classification:

| PART        | PART NUMBER      | ECCN        |
|-------------|------------------|-------------|
| Hadron 60Hz | 70640AS32-6PMRXX | 6A003.b.4.b |

### 2.2 Product architecture

The Hadron 640R is designed to be a UAS dual IR+EO camera payload with an integrated IMU for gimbal control. It provides raw (uncompressed) IR and EO video for further processing in the airframe. Mechanically, the back of the Hadron 640R can be mounted against the yoke of the gimbal. The electrical interface is a 60-pin connector for video and CCI for the two cameras as well as the IMU. As a part of the delivery, software reference code for NVIDIA Jetson Nano/TX2, Qualcomm RB5, and Lantronix OpenQ 865 is provided.

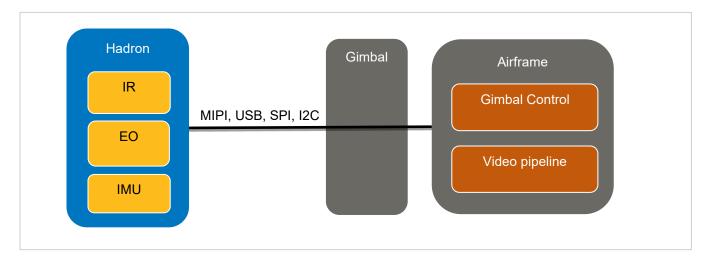



FIGURE 1. HADRON 640R ARCHITECTURE

### 2.3 IR camera

The IR camera is a MIPI Boson® 640x512 with 32° HFOV (PN 20640AS32-6PMRX 60Hz, or 20640AS32-9PMRX

9Hz). It has a built-in shutter for non-uniformity corrections.

The hyper-focal distance is given by the table below where c is the circle of confusion (2x the pixel pitch), f is the focal length, N is the F# number and H (H =  $f^2/Nc + f$ ) is the hyper-focal distance.



| CAMERA | С [ММ]   | F [MM] | N = F/# | н [ММ] |
|--------|----------|--------|---------|--------|
| IR     | 2*0.012  | 13.6   | 1.0     | 7720   |
| EO     | 2*0.0007 | 4.8    | 2.3     | 7160   |



## 2.4 EO camera

The EO camera uses an Omnivision OV64B 64MP sensor and a 67° HFOV f/2.3 lens.

# 2.5 Persistent Storage on the Payload

The EEPROMs on the EO sensor board and the main board can be read and written by the user. FLIR reserves the first 2048 bytes on each EEPROM for production data. Notice that the EEPROMs are not write protected – **the user must take care to not overwrite the first 2048 bytes**.

#### 2.5.1 Identification and Calibration

Each Hadron 640R payload is calibrated for camera relative alignment. This alignment represents the angular offset between the optical axes of the two images. The alignment between each of the imagers and the mounting points on the frame is not calibrated (see Fig. 2).



#### FIGURE 2: RELATIVE ALIGNMENT ANGLE AXIS DESCRIPTION

That data is stored in the Boson JFFS file system as a file called *calibration.csv* with the following format:

[Hadron Electrical Revision],[Hadron Serial Number],[Hadron Part Number],[HW Rev],[Boson Serial Number],[Boson Part Number],[Test Date],[EO IFOV (deg)],[IR IFOV (deg)],[Theta (deg)],[Phi (deg)],[Psi (deg)]

#### For example:

FLIR0001,R001276,70640AS32-6PMRXX,0001,225844,20640AS32-6PMRX,2022-11-4,+0.0087813,+0.0529178,-0.560,-0.441,-0.062



# 3 MECHANICAL

The Hadron 640R has an IR and EO camera intended to be mounted vertically. The payload frame serves as an external mechanical interface. A gimbal yoke can be screwed onto the back and host a cable harness leading from the Hadron 640R to the airframe. This provides ingress protection from the back of the payload. The Hadron 640R itself is IP54 rated provided that the rear of the payload is sealed. The Hadron 640R dissipates some heat through convection off the front surface but the primary heat path should be through the metal back plate to which the gimbal shall be mounted. Careful thermal design is important to guarantee the performance of the IR imager.

The Hadron 640R has an external protective housing that secures ingress protection and protects it from impact. It also helps against image non-uniformities in the IR image caused by wind cooling the lens holder.

For a mechanical specification of the interface, see Figure 4.

### 3.1 Hadron 640R mechanical dimensions

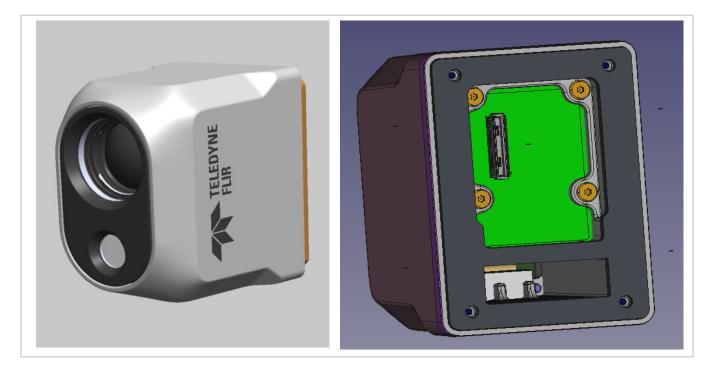



FIGURE 3. 3D RENDER OF HADRON 640R WITH PROTECTIVE HOUSING.



FLIR Hadron 640R Engineering Datasheet

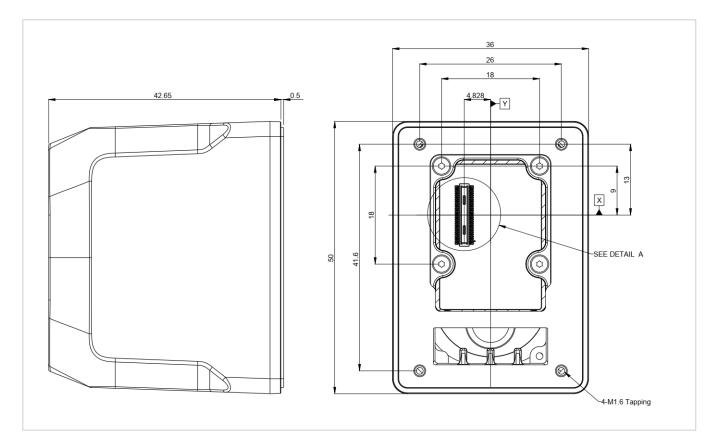



FIGURE 4. HADRON 640R EXTERNAL DIMENSIONS [MM] WITH PROTECTIVE HOUSING.

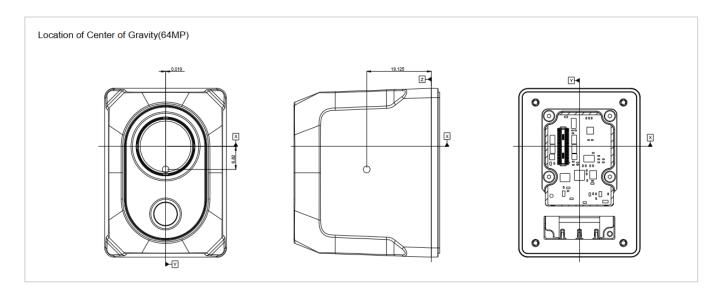



FIGURE 5: ESTIMATED COG FOR THE PAYLOAD



# 3.2 IMU location

The IMU is located on the main board close to the center of the gravity and in the Hadron 640R x and y direction. See Figure 6 for the IMU intrinsic coordinate system (different from the Hadron 640R coordinate system).



FIGURE 6. APPROXIMATE LOCATION OF THE IMU AND DESIGNATION OF THE IMU COORDINATE AXIS



# 3.3 Example of gimbal integration

The gimbal is not part of Hadron 640R, but the design is intended to be integrated with a gimbal.

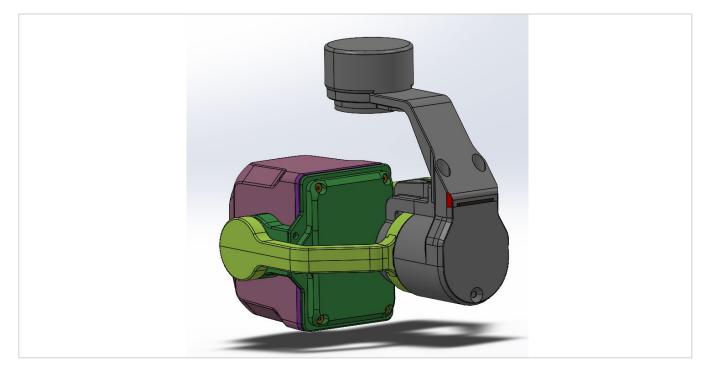



FIGURE 7. EXAMPLE MOUNTING APPLICATION OF THE HADRON 640R ON A 3-AXIS GIMBAL.

When integrating with a gimbal, the read of Hadron 640R must be against the metal frame to ensure that the system meets IP54.



# 4 ELECTRICAL

### 4.1 Overview

Hadron 640R has 3 main internal components:

- Boson IR camera: The self-contained IR camera.
- EO camera: An OV64B sensor with optics, an EEPROM for EO sensor calibration data.
- **Hadron 640R main board**: The board that connects the Boson and EO camera. It also holds the IMU and an EEPROM with IMU calibration parameters.

The input power is  $5 \pm 0.25$ V on 3 pins. Each pin can sustain 0.3A. Internal 3.3V and 1.8V power rails are generated on the main board.

- Typical power consumption while streaming: <1800mW
- Maximum power consumption (peak when Boson shutter is activated): <3000mW

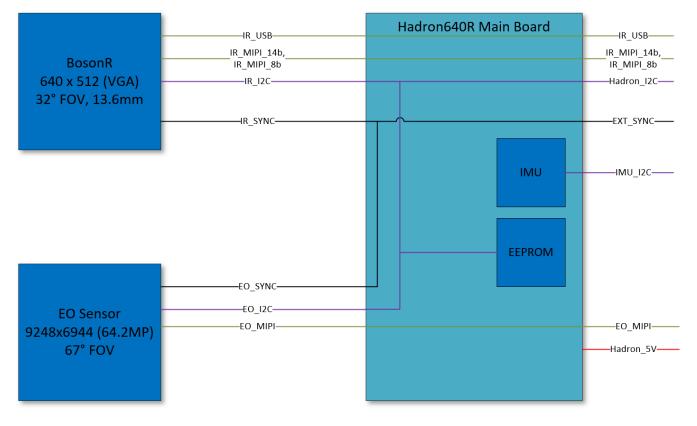



FIGURE 8. HADRON 640R INTERNAL AND EXTERNAL SIGNALS.



# 4.2 Hadron 640R external signals

Table 1 below lists all external signals. The buses from the components to the main connector are described below. The main connector on Hadron 640R is DF40C-50DP-0.4V(51) and an example of a mating connector is DF40HC(2.5)-50DS-0.4V(51).

| PIN | NAME         | PIN | NAME         |
|-----|--------------|-----|--------------|
| 1   | USB_VBUS     | 2   | 5V           |
| 3   | USB_ID       | 4   | 5V           |
| 5   | GND          | 6   | 5V           |
| 7   | IR_USB_D_N   | 8   | 5V           |
| 9   | IR_USB_D_P   | 10  | /HADRON_RST  |
| 11  | GND          | 12  | GND          |
| 13  | IR_USB_TX_N  | 14  | EO_MIPI_D3_P |
| 15  | IR_USB_TX_P  | 16  | EO_MIPI_D3_N |
| 17  | GND          | 18  | GND          |
| 19  | IR_USB_RX_N  | 20  | EO_MIPI_D1_P |
| 21  | IR_USB_RX_P  | 22  | EO_MIPI_D1_N |
| 23  | GND          | 24  | GND          |
| 25  | IR_MIPI_D1_N | 26  | EO_MIPI_C_P  |
| 27  | IR_MIPI_D1_P | 28  | EO_MIPI_C_N  |
| 29  | GND          | 30  | GND          |
| 31  | IR_MIPI_D0_N | 32  | EO_MIPI_D0_P |
| 33  | IR_MIPI_D0_P | 34  | EO_MIPI_D0_N |
| 35  | GND          | 36  | GND          |
| 37  | IR_MIPI_C_N  | 38  | EO_MIPI_D2_P |
| 39  | IR_MIPI_C_P  | 40  | EO_MIPI_D2_N |
| 41  | GND          | 42  | GND          |
| 43  | EXT_VSYNC    | 44  | /IMU_CS      |
| 45  | IMU_INT      | 46  | IMU_SCK_SCL  |
| 47  | CAM_I2C_SCL  | 48  | IMU_MOSI_SDA |
| 49  | CAM_I2C_SDA  | 50  | IMU_MISO     |

TABLE 1: HADRON 640R MAIN CONNECTOR PINOUT



| PIN / SIGNAL     | VOLTAGE                                                   |
|------------------|-----------------------------------------------------------|
| Power 5V         | 5V ± 0.25V                                                |
| 1.8V logic (I2C) | V high: 1.26 to 2.1V<br>V low: -0.3 to 0.54V              |
| USB              | According to USB2 and USB3 standards                      |
| MIPI             | According to CSI-2 version 1.2 and MIPI D-PHY version 1.2 |

### 4.2.1 Data buses

| PIN / SIGNAL   | VOLTAGE                                                                                                                                                                                                                                                                                                                                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IR_USB         | • Boson has a USB interface for video (UVC) and CCI. It supports both USB 2.0 and USB 3.0. The video format options are described in the Boson datasheet (see Section 1.1).                                                                                                                                                                                       |
| IR_MIPI        | <ul> <li>The Boson supports 2-lane MIPI. The associated CSI-2 I2C interface<br/>(IR_I2C) is shared with the EO camera, the EO and IMU EEPROM on I2C<br/>bus I2C_CAM.</li> </ul>                                                                                                                                                                                   |
| EO_MIPI        | <ul> <li>The OV64B EO sensor has a 4-lane MIPI interface.</li> <li>The EO MIPI trace lengths from the sensor to the external connector are 55 ± 0.5 mm.</li> </ul>                                                                                                                                                                                                |
| IMU_I2C (1.8V) | <ul> <li>The IMU has an I2C interface. The I2C bus is separate from the other devices on I2C_CAM.</li> <li>IMU I2C address: 1101001</li> </ul>                                                                                                                                                                                                                    |
| I2C_CAM (1.8V) | <ul> <li>EO_I2C <ul> <li>The EO sensor I2C bus with registers for image control.</li> <li>EO sensor I2C address: 110 1100</li> </ul> </li> <li>EO_IMU_I2C <ul> <li>The IMU EEPROM I2C bus.</li> <li>IMU EEPROM I2C address: 101 0001</li> </ul> </li> <li>I2C_IR <ul> <li>Boson CCI part of CSI-2.</li> <li>Boson CCI I2C address: 1101010</li> </ul> </li> </ul> |
| RESET_N        | • The Boson and the EO sensor can be reset by holding RESET_N low.                                                                                                                                                                                                                                                                                                |